
Abstract. Vibrational energy flow in organic molecules
occurs by a multiple-time-scale mechanism that can be
modeled by a single exponential only in its initial stages.
The mechanism is a consequence of the hierarchical
structure of the vibrational Hamiltonian, which leads to
diffusion of vibrational wavepackets on a manifold with
far fewer than the 3N)6 dimensions of the full vibrational
state space. The dynamics are controlled by a local
density of states, which does not keep increasing with
molecular size. In addition, the number of vibrational
coordinates severely perturbed during chemical reaction
is small, leading to preservation of the hierarchical
structure at chemically interesting energies. This regu-
larity opens up the possibility of controlling chemical
reactions by controlling the vibrational energy flow.
Computationally, laser control of intramolecular vibra-
tional energy redistribution can be modeled by quantum-
classical, or by purely quantum-mechanical models of the
molecule and control field.

Keywords: Power law – Coherent control – Symplectic
propagator – Quantum diffusion – State space

1 Introduction

The pioneering work of Bixon and Jortner in the 1960s
showed that vibrational energy flow (intramolecular
vibrational energy redistribution, IVR) must be reck-
oned with if we are to understand the reactivity of
energetically activated molecules [1]. Rapid equiparti-
tioning of a molecule’s energy content forms the basis of

modern statistical reaction models. The subject of IVR
and its effect on chemical reactivity has engendered
active interest over the past few decades, with general
reviews recapping the theoretical and experimental
milestones of the 1970s [2], 1980s [3], and 1990s [4].

As it turns out, IVR is not a totally random pro-
cess, not even at energies high enough for chemical
reaction to occur. The root cause of IVR – vibrational
anharmonicity – is relatively weak in organic mole-
cules, thanks to the Born–Oppenheimer separation of
electronic and vibrational energy scales [5]. Moreover,
the density of states that controls IVR is a local one
[6], which depends on the pattern of vibrational reso-
nances resulting from bond connectivity and anhar-
monicity [7]. Because the local density of states is a
function of size-independent molecular properties, IVR
does not simply scale with molecular size [8]. Instead,
vibrational energy flow is a highly structured process
even in large organic molecules. Locally, it can be
described by anisotropic diffusion of an initial vibra-
tional wavepacket. Globally, the diffusion occurs on a
vibrational manifold of d� 3N)6 dimensions [9]. Even
the strongest manifestations of anharmonicity, bond-
breaking and bond-making, leave the majority (all
but 6) of the vibrational degrees of freedom relatively
untouched.

In the modern picture, IVR is pretty efficient at
somewhat randomizing molecular energy, but much less
efficient at thoroughly randomizing it, even at chemical
energies. Anisotropic quantum diffusion, like its classical
analogs [2, 10], is a subexponential process. This slug-
gishness opens up IVR to the possibility of control, and
the control of IVR in turn presents a universal mecha-
nism for controlling chemical reactions [8]. My goal here
is to summarize these advances from the perspective of
quantum-mechanical computational models we have
developed to describe the mechanism and control of
molecular energy flow, ranging from very specific and
accurate molecular models to very general ones based on
hierarchical local random matrices. The need for more
theoretical work to explain quantitatively the deviations
from global statistical behavior observed in reaction
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dynamics experiments already reported in the literature
is highlighted in Sect. 5. The reader will find a review of
the many other fascinating experimental and theoretical
aspects of the subject in the review articles cited in this
Introduction, and further articles therein.

2 Hamiltonian and state space model

The coupling structure of the vibrational Hamiltonian,
Hvib, is hierarchical: when Hvib is represented in terms of
a set of states localized in some coordinate representa-
tion (‘‘feature states’’), it can always be brought into a
form where an initial state is coupled to a small set of
other states, coupled in turn to another small set, and so
on. This is in stark contrast to a Hamiltonian with
random matrix elements, which cannot be brought into
such a form [4]. Feature states are sometimes represented
by a tiered tree [11], but a 3N)6 dimensional state space,
with one dimension for each vibrational mode, provides
a more complete description (Fig. 1; see also Ref. [4],
Fig. 15 for a comparison). In state space, a vibrational
wavepacket diffuses on a low-dimensional manifold
(d� 3N)6). If d is less than 1, states are localized, and
no energy flow occurs. Above the IVR threshold,
vibrational wavepackets still require a very long time
to explore the entire state space, but they eventually
reach the statistical limit [12]. Exponentially fast explo-
ration of the whole accessible state space would occur
only if d approaches 3N)6, a limit which is excluded by
the local nature of chemical bonding [7]. The origin of
this picture is discussed in more detail later.

Within the Born–Oppenheimer approximation, the
vibrational Hamiltonian can be written as

Hvib=hc ¼ K þ
X1

n¼2

Y3N�6

k¼1

~VVn¼Rnk ayk þ ak

� �nk

ð1Þ

in terms of a suitable set of modes {k} and their ladder
operators. The modes may be normal modes, local
modes, or any other reasonably smooth coordinate
representation. For our general considerations, the
choice does not matter. The kinetic energy, K, is not
necessarily quadratic either: appropriate canonical
transformations ensure that the anharmonicity has
to appear somewhere. In Eq. (1) the potential constants,
~VVn, can be sorted by order n=Rknk equal to 2, 3 (cubic),
4 (quartic), etc.

As a consequence of the separation between elec-
tronic and nuclear time scales, each order n has ~VVn typ-
ically smaller by a factor a=0.05)0.2 than the previous
order [13]. The factors ai (not to be confused with the
ladder operators ak) tend to be smaller for lower-
frequency modes. Qualitatively, this scaling can be
understood as follows. The smaller time scale of electronic
motions leads to larger electronic energy level separa-
tions: electronic term energies and dissociation energies
tend to be 10–100 times larger than vibrational fre-
quencies (20,000 versus 200 cm)1). The change in well
curvature with bond distance is affected by the same
time scale separation: larger dissociation energies (even
faster, lighter electrons) would produce potential wells
that curve to dissociation even more gently, thus de-
creasing the anharmonicity of the potential. Conversely,

Fig. 1A–C. Vibrational energy flow in state space. Three of the
3N)6 vibrational quantum number axes are shown, together with
the 4 · 4 · 5 cubical lattice of all states from the ground state
|00� � �0æto the interior state |45� � �5æ. The thick black lines indicate
significant couplings (Lij � 1), and the thin dotted triangle is a
surface of constant vibrational energy. Corresponding intramolec-
ular vibrational energy redistribution (IVR) spectra are shown at
the bottom. A Below the IVR threshold; only isolated resonances

exist. B Just above the IVR threshold; off-resonant coupling via
state |2æ lights up two eigenstates in the spectrum that are mixtures
of |0æ and |1æ with no significant admixture of |2æ, even though |2æ
mediates the coupling. C Well above threshold, direct and higher-
order couplings contribute more. From any given point in state
space, energy is transported only in a few directions: energy flow is
locally anisotropic, and is globally characterized by a dimension
d� 3N)6
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heavier nuclei produce more closely spaced vibrational
levels that lie in the more harmonic part of the surface
for a given quantum number n.

This scaling behavior has useful practical conse-
quences. It is remarkable that a sufficiently ‘‘random’’
molecular shape results in potential constants, even for
internal rotor modes, that can be represented by a rap-
idly converging cumulant expansion of the form [7, 14]

Vn �
Y3N�6

k

vkð Þnk=nank
k

Y3N�6

l

cð2Þnknl

kl

Y3N�6

m

cð3Þ
nk nlnm

klm . . . : ð2Þ

The first product term, a fully factorized potential
surface, already provides a reasonable approximation
for the potential constants of compact molecules. The
higher-order terms decrease mode coupling further when
modes move different sets of atoms. Except for very high
symmetry molecules, coupling constants between vibra-
tional motions of two different atoms drop off expo-
nentially with the number of intervening bonds [7].
Larger organic molecules tend to have fairly low sym-
metry structures, so most pairs of modes are not strongly
directly coupled.1 For that reason, IVR is governed by a
local density of states, which stops increasing above a
certain molecular size [6]. The upshot of Eq. (2) is that
potential constants generally scale as Ævan)3 in a pre-
dictable way, where n is a cubic or higher order of
coupling, and v is a typical cubic coupling constant for a
single vibrational mode.

Equations (1) and (2) imply that a limited set of res-
onant couplings transport energy among modes, as long
as the average energy per mode is much less than the
electronic energy scale. The latter criterion is satisfied
even during chemical reaction, when one or a few out of
the 3N)6 modes approach the electronic energy scale.
The resonance structure is best viewed in a 3N)6
dimensional state space (classically an action space).
What states should one pick? Eigenfunctions would be an
obvious choice; they render the calculation of dynamics
trivial. Unfortunately, Eq. (1) is just sufficiently anhar-
monic, so the eigenfunctions are hard to evaluate for even
modest-size molecules at chemically interesting energies.
Instead, it is more useful if we pick a feature basis [46],
which is based on the lowest-order terms in the Hamil-
tonian [1] and includes states that carry oscillator
strength. In spirit, this is equivalent to finding the
‘‘spectroscopic’’ Hamiltonian that roughly reproduces
the short-time dynamics via anharmonic local, normal,
or other simple modes, and then adding couplings among
modes, starting with the largest. An objective (but not
unique) criterion for choosing feature bases has been
given [16].

Figure 1 shows how energy flows in state space.
Below the threshold for IVR, only occasional pairs of
states are connected by resonances [17]. Just above the
threshold, off-resonant couplings are most common,
leading to low-order coupling chains that mediate energy

flow [18]. In such chains, the couplings between partic-
ipating states are typically small compared to their en-
ergy gaps, and the IVR linewidths are therefore smaller
than the couplings [19]. Well above the threshold, direct
couplings of increasingly higher order contribute to the
dynamics, and the IVR linewidths become larger than
the couplings [20]. Because of the local nature of
chemical bonding, couplings starting at a given point in
state space are not equally strong in all directions. A
wavepacket starting at some point generally diffuses in
a manifold of dimension much lower than 3N)6. This
leads to a slow decay, P(t)=|Æ0|tæ|2, of the initial state
|0æ, which is closer to a power law, (1+2kt/d)-d/2, than
to an exponential decay, e)kt. Only in the limit of
d fi 3N)6 does the decay (1+2kt/d))d/2 approach e)kt.
It has been shown that d, as estimated from the energy
differences, DE(ij), and couplings, V(ij), among feature
states, is in good agreement with full quantum dynamics
calculations such as those illustrated in Fig. 2 [16].

Modelling and analysis of experiments have shown
that d is generally much less than 3N)6: chains of
strong resonances spreading in all directions of state
space are rare, and the vibrational wavepacket takes a
long time before it covers the entire energetically al-
lowed state space. Instead, it must wind its way through
a much lower dimensional manifold [12, 16]. Figure 2
shows an experimental decay,P(t), a quantum dynamics
simulation based on ab initio calculations, a simulation
with a state space molecular mechanics (SSMM) force
field (see later) and a quantum dynamics simulation
based on a very simple hierarchical local random matrix
(HLRM) model that mimics only the most general
properties of the molecular Hamiltonian. All four de-
cays are power laws after P(t)<0.1)0.01. They are ap-
proximated by a single exponential fit only at early
times, and then the golden rule (GR) also provides a
good description of the ‘‘initial’’ rate. (The density
of states for all the molecules of interest here is large
enough that the quantum Zeno effect is negligible, i.e.
exponentials provide good fits near but not at t=0.) The
two simplest calculations (SSMM and HLRM) merit
special emphasis.

SSMM force fields are based on the scaled and fac-
torized potential surfaces given by Eq. (2). They are
particularly useful for computing reasonably accurate
quantum dynamics of large molecules that are out of the
reach of ab initio based methods [12]. Rules for com-
puting potential constants for any type of organic mol-
ecule are given in Refs. [5, 7, 14]. The general finding of
SSMM quantum dynamics simulations is that large
molecules also vibrationally dephase on a manifold
whose dimension is much smaller than 3N)6 [12, 19].
This further suggests that energy flow is governed en-
tirely by the local structure of state space, even in fairly
large organic molecules. Analytical models have already
shown that the local density of states, not the total
density of states, is important for computing IVR
properties from the molecular Hamiltonian (see also
later) [6, 21], and numerical simulations support this
notion [20, 22, 23, 24].

HLRM models can be used to study very general
criteria that the Hamiltonian must satisfy to produce

1 However, very large molecules have a spectral density which
remains large below a critical value (about 50–100 cm)1), where
extended modes and more delocalized transport are possible. See
Ref. [15] for a treatment of proteins segments
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power-law dephasing [25, 26]. The model used in Fig. 2D
(dubbed BSTR in Refs. [20, 25]) has only two rules
distinguishing it from a global random matrix model.

1. Matrix elements scale as vanðijÞ�3 with the total
quantum number difference, nðijÞ ¼ RknðijÞk , between
two randomly chosen states {i, j}.

2. The n(ij) for any triplet of states are subject to the
‘‘triangle rule’’ jnðhiÞ � nðijÞj � nðhjÞ � jnðhiÞ þ nðijÞj:
These two rules enforce the same locality of couplings

present in a vibrational Hamiltonian: matrix elements
drop off exponentially with quantum number difference,
and states in a resonant coupled cluster all tend to be
coupled to one another, whereas states outside are not.
Comparison with ab initio calculations shows that
rules 1 and 2 are satisfied by most couplings calculated
from potential-energy surfaces. Rules 1 and 2 invariably
lead to power-law decays. Interestingly, many other
systems with disordered (and hence nonextended) vib-
rational modes (amorphous solids, liquids at short times,
coupled spins in NMR) should obey the same general
localization rules [25].

The HLRM highlights the difference between the
state space and GR models: if either rule 1 or 2 is
relaxed, the IVR dynamics become single-exponential
(Fig. 2D). Localized mode couplings are thus essential
for a quantitative description of IVR. The single rate
constant obtained when rules 1 or 2 are relaxed is
identical to the famous GR result kIVR ¼ 2p=�hqtotV

2
rms,

where Vrms is the root-mean-square (rms) coupling
strength of all prediagonalized ‘‘bath’’ states to the ini-
tially prepared state. In practice, Vrms cannot be com-
puted without diagonalizing the manifold of bath states,
so the GR formula provides no shortcut compared to the
state space treatment. Furthermore, the GR expression
neglects all correlations between energies and couplings
of the bath states, by condensing all the information into
one rms coupling strength and one global density of

states. In effect, it replaces the local couplings by a mean
coupling strength, as though all modes in a molecule
were on average equally coupled [4]. Hence the GR
prediction that the IVR rate should depend on the global
density of states.

3 Some tools for modeling IVR

Many computational tools have been adapted for IVR
dynamics. Any calculation must begin by determining an
appropriate Hamiltonian. The use of ab initio force
fields and SSMM force fields based on Eq. (2) has
already been briefly discussed, and a number of exam-
ples exist in the literature. When high accuracy is
desired, it may be useful to incorporate into ab initio
surfaces some experimental information. Scaling all
harmonic and anharmonic terms according to Eq. (2)
[27] and using potential-shaped interpolation functions
[28] are useful tools for generating modified ab initio
surfaces that incorporate experimental information. To
compute dynamics for a given potential surface, we have
developed two approaches, one spectral and one prop-
agator, which have proved very efficient for dealing with
IVR problems. These are briefly described.

Symplectic propagators exploit a structural similarity
between the time-dependent Schrödinger equation re-
written to split the real and imaginary parts into two
components of a vector [29],

Reð _WWÞ
Imð _WWÞ

� �
¼ 0 �ĤH

ĤH 0

� �
ReðWÞ
ImðWÞ

� �
; ð3Þ

and Hamilton’s equations of motion. We developed the
simplest of these, the ‘‘shifted-update-rotation’’ propa-
gator or SUR, specifically for IVR calculations [30]. It
requires only a few lines of code and minimal variable
storage. Its quadratic phase convergence makes it
possible to tailor the accumulated error, so calculations

Fig. 2A–D. IVR decays on a log–log scale with exponential and
power-law fits shown. A Experimental data for SCCl2 [16, 27].
B Accurate quantum simulation for an SCCl2 interior state, based
on an experimentally refitted ab initio Hamiltonian [16]. C State
space molecular mechanics calculation for fluorene, showing
deviations from exponentiality similar to experiments in a larger
molecule [12]. D Hierarchical local random matrix calculation with

nine degrees of freedom [25]. The ‘‘randomized’’ curve, which fits
an exponential with a small coherence hole, is obtained by shuffling
the bath–bath couplings of the matrix. Thus, golden-rule-like
behavior is reestablished on all time scales when the ‘‘triangle rule’’
correlation among matrix elements is wiped out. Clearly, gateway
states (preserved by bath–bath-only shuffling) are not by themselves
responsible for the power-law decay
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can run for 10–100 ps with 104–106 basis states and less
than 1% rms error, before propagators with linear
scaling and sudden error onset as a function of time step,
such as the Chebyshev propagator [31], become more
efficient. This is particularly attractive when large
families of shorter calculations are required, such as
when looking at the statistical ensemble dynamics of
HLRM models [25]. The results of the calculations
shown in Fig. 2B–D were carried out with the SUR
propagator. In addition, variants of the SUR propaga-
tor are fast and robust in the presence of time-varying
matrix elements, and have been used to compute IVR in
the presence of electromagnetic fields pumping molecu-
lar transitions, for example, in quantum-classical control
calculations [32].

When eigenstate resolution is desired, spectral meth-
ods for calculating IVR lineshapes are useful [33, 34, 35,
36]. The generic problem is summarized in Fig. 3. An
initial state |0i is coupled to a bath manifold {|ii}, which
is usually not prediagonalized. In principle, diagonaliz-
ing the Hamiltonian yields the eigenstates |ni, line po-
sitions En, and intensities |hn|0i|2. The difficulty with the
IVR Hamiltonian is that it requires many basis states,
even in the discrete variable representation [37], which
improves the sparseness, but not the size, of the Ham-
iltonian. The eigenvectors are not very sparse above the
IVR threshold, and must be computed at great expense
to extract intensities. For matrix sizes exceeding
104 · 104 the expense rapidly becomes prohibitive.

The matrix fluctuation dissipation (MFD) theorem is
one solution to this problem. If we imagine that the off-
diagonal matrix elements coupling the initial state to the
bath manifold are scaled by a unitless parameter k � 1,
then one can use the Hellmann–Feynman theorem to
prove that [35, 38]

jhnj0ij2 ¼ o lnEn

ok

����
k¼1

ð4Þ

if Tr{H}=0 (i.e. the line center is shifted to zero energy).
Variations on Eq. (4) are possible by scaling other
matrix elements of H, but they always relate the line
intensities to derivatives of the eigenvalues. This means
that the lineshape (and hence rate) can be calculated via
two eigenvalue evaluations, without explicit knowledge
of the eigenstates. Practical implementations of the
MFD theorem often use Lanczos iteration, and in that
way are analogous to ‘‘recursive residue generation’’
[33], although Eq. (4) is a nonrecursive relation for the
spectral intensities.

Figure 3 shows an IVR line shape calculated for the
fourth OH stretching overtone of methanol using the
MFD theorem and a SSMM potential surface [24]. Such
a simple potential cannot be expected to agree exactly
with experiment, but it shows the same qualitative fea-
tures [39]: the 4mCH+mOH overtone borrows intensity
from 5mOH, and shows a different local IVR rate (feature
width). The MFD theorem has been used for calcula-
tions ranging from accurate potential surfaces to
HLRMs [12, 20, 25]. It has recently been adapted for a
fully quantum mechanical control theory which can be
used to study IVR (Sect. 6) [40], and Chen and Guo [41]
have used it to automatically assign quantum numbers
based on coordinate operator matrix elements.

4 What the models tell us

One of the most fundamental concepts in the state space
theory of IVR is the local number of coupled states, Nloc

[4]. By binning the local coupled states into fixed energy
intervals, one obtains the local density of states, qloc.
Nloc near state j is given by

Nloc ¼ RiL2
ij ; ð5Þ

where one approximates with reasonable accuracy Lij �
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DEðijÞ=V ðijÞð Þ2

q
: [7]. The energy gaps and cou-

pling matrix elements depend sensitively on bonding,
and can be calculated from potential surfaces ranging
from ab initio to SSMM to local random matrix,
depending on the size of the system and the computa-
tional power available.

Another important quantity is the effective number of
participating states, Neff. If an initially prepared vibra-
tional wavepacket dephases over a total of Neff states, its
survival probability P(t) will be diluted from 1 (at t=0)
to the ‘‘dilution factor’’ r=Neff

)1 [42]. For example, if
P(t) drops to 0.001, this indicates that 1,000 states are
participating in the IVR. If all states are populated, on
average, the same as t fi 1, then the statistical share of
the initial state becomes the observed 0.001. Neff can be

Fig. 3. A Setup of the IVR Hamiltonian for the matrix fluctuation
dissipation (MFD) theorem. k multiplies only the off-diagonal
elements connecting the ‘‘bright’’ state to the bath. B Large-scale
BSTR-MFD quantum calculation of IVR in the fourth OH
overtone region of methanol; the overtone and combination band
are strongly coupled, but differently broadened because of
fluctuations in the ‘‘bath’’ local density of states [24]
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computed from the IVR lineshape, or measured experi-
mentally from the decay P(t) or from high resolution
spectra. Neff is generally larger than Nloc: the local
neighbors of the bright state will show up in the
spectrum, but with lower intensity so will the neighbor’s
local neighbors, and so forth.

The relationship between these fundamental quanti-
ties for many small organic molecules is shown in Fig. 4.
Neff was measured experimentally by Stewart and
McDonald [42]. The range of predictions from the
BSTR local random matrix model is also shown in
Fig. 4, and is in excellent agreement with experiment.
When Nloc exceeds 1, Neff rapidly increases to the total
number of eigenstates under the IVR lineshape; below
the threshold, Neff fi 1 and no energy redistribution
occurs. This threshold behavior occurs as the transition
from Fig. 1A to b is made. A similar plot against the
total density of states shows only a weak correlation,
and only because the molecules studied were mostly
smaller than the average localization length of a vibra-
tional mode (usually 2–3 bonds).

An early success for the local density of states model
was the prediction of the broadening mechanism for
strongly coupled Darling–Dennison resonant state pairs
in methanol [24]. Boyarkin et al. [39] found experimen-
tally that the 4mCH+mOH band borrows intensity from
the 5mOH overtone, to the point where both transitions
are nearly equally intense. Yet despite the strong cou-
pling, their linewidths are very different. Symmetry ar-
guments (plus/minus combination of dark and bright
states have different phases) and fluctuations in the local
density of bath states, which couple differently to inte-
rior and edge states (Fig. 1), were put forth as hypoth-
eses. Our large-scale local random matrix simulations
came out in favor of the latter, predicting that the
combination band would be more fragmented in 80% of
the cases and the pure overtone (edge state) in 20% of
the cases (see the example in Fig. 3). Later experiments
with 13C methanol confirmed that the dilution factor of
the narrower band could be increased relative to the

other by shifting the bands on top of different bath states
[43]. Clearly, nearly isoenergetic, strongly coupled spec-
tral features can have very different IVR rates, which is
best explained in terms of fluctuations in the small local
density of states.

Recently, IVR computations in the threshold region
of organic molecules with ten or more atoms have be-
come possible [19]. Calculations based on Hartree–Fock
potential surfaces are too harmonic, but a uniform
rescaling of the anharmonicity, so that vibrational
frequencies agree with experiment, also brings the IVR
linewidths and Neff into agreement with experiment.
Calculations for pyrrole and triazine reveal the mecha-
nism shown in Fig. 2B. The IVR linewidths are much
narrower than the off-resonant couplings that give rise
to them. The calculations also explain why most of the
gateway states that mediate the effective coupling
of nearly isoenergetic states remain invisible in the
spectrum (a quantum phase interference effect) [19].

Another important effect of localization is the com-
petition between more coupling partners available for
‘‘interior’’ states in state space versus stronger local
couplings for ‘‘edge’’ states. Interior states are those
deeply embedded in state space (Fig. 1), with many
modes excited simultaneously; this is the more common
kind of state. Edge states include overtones with exci-
tation in only one mode; these are the optically more
accessible states. Experiments and simulations of the
seven-atom molecule propyne (H3C-C”C-H) show that
the concentration of energy in a single edge state can
lead to more IVR [22, 24, 44, 45]. The acetylenic CH
stretching overtone 3m1 has a larger Neff than the nearly
isoenergetic methyl stretch/acetylenic stretch combina-
tion band 2m1+m6. This is best pictured as follows. The
combination band distributes the energy into two
packets, localized at opposite ends of the molecule.
The resulting local densities of states mimic separate
low-energy 2m1 and m6 excitation. Overtone excitation
deposits the full energy in one spot, yielding a higher
local density of states. In sufficiently large molecules, one
would generally expect excitation of two nonoverlapping
modes to result in less IVR than the same energy being
concentrated in one mode. For ring structures, for lo-
calized but overlapping modes moving the same atoms,
or for delocalized modes, the larger number of potential
coupling partners in the interior of state space would win
out.

Calculations of initial IVR decay rates based on state
space models generally give good agreement with ex-
perimental data [12, 22]. Of more interest with regard to
nonstatistical reactions and control of IVR is the sub-
sequent power-law decay of IVR predicted by the state
space calculations [9, 12, 22]. The most detailed experi-
mental and quantum dynamics study to date is for the
six degree of freedom system thiophosgene [16, 27].
Stimulated emission pumping vibrational spectra from
the zero point to the dissociation limit show at least four
layers of hierarchical structure. (The top layer is gener-
ally termed ‘‘polyad structure’’, on the basis of the
extensive acetylene studies reviewed by Nesbitt and Field
[46]). Calculations of d, both by analysis of the resonant
coupling structure and by quantum dynamics calcula-

Fig. 4. Correlation of effective number of participating states with
local number of coupled states. Above the IVR threshold at
Nloc � 1, Neff rapidly increases and the initially prepared state is
diluted over many eigenstates. The circles are reanalyzed experi-
mental data from Ref. [42], the thin lines are the range predicted by
the BSTR model [23]
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tions on a fitted high level ab initio surface, yield d � 3
for interior states at 9,500 cm)1. Isoenergetic edge states,
such as the 7mCS stretching overtone have d � 1, and lie
just at the localization transition [16]. If we imagined the
entire vibrational spectrum excited by an ultrafast laser,
completion of the IVR process is delayed by 2 orders of
magnitude in time (Fig. 2A), from the femtossecond into
the picosecond region.

SSMM analysis and quantum simulations on the
much larger fluorene and cyclohexylaniline molecules
[12], studied experimentally by Kauffman et al. [47]
and Smith and McDonald [48], show a similar picture,
with d in the range 1–4 depending on the part of state
space initially accessed. Again, the completion of the
IVR process is delayed by orders of magnitude in time.
Very recent work by Pate and coworkers [49, B.H.
Pate personal communication] on substituted alcohols,
using microwave–IR multiresonance methods to access
the decay of both bright and bath states, also verifies
the multiple time scale behavior. Although their data
is presently accounted for by a biexponential decay,
further probing is likely to reveal additional time
scales.

Many more examples of the application of state space
models to IVR exist, but the ones already described
provide a flavor of the differences between local and
global modeling of IVR. Experiment and modeling agree
that the extent and time course of IVR require models
that take into account the local nature of chemical
bonding, and hence the highly directional structure of
vibrational resonances in state space. The next questions
are: what does this have to do with chemical reactivity,
and can we use the local nature of IVR to control
reactivity?

5 Is statistical reactivity only ‘‘skin-deep’’?

Statistical rate models such as the Rice–Rampsberger–
Kassel–Marcus (RRKM) model have enjoyed enormous
success. In many experiments, preparation is statistical
to begin with, and IVR is not necessary to ensure
a statistical outcome [50]. Even with quantum state-
specific preparation, IVR – asymptotic dynamics
notwithstanding – generally provides sufficiently fast
randomization of an evolving vibrational wavepacket, so
reactivity can be estimated based on an equipartitioning
of energy among vibrational modes. Still, this begs the
question: is the outcome statistical by a wide margin, or
is IVR just barely fast enough when initial states are
carefully prepared? The latter makes for many interest-
ing possibilities of controlling reaction dynamics.
Indeed, there are numerous subtle experimental exam-
ples of large-molecule nonstatistical behavior, indicating
that the statistical description fails when we dig deeper
into the underlying dynamics. Such nonstatistical prop-
erties ‘‘just below the skin’’ could be exploited by the
IVR control mechanisms discussed in Sect. 6.

Deviations from statistical rate theory for triatomic
molecules, van der Waals clusters, and reactions
proceeding on directly dissociative surfaces have been
well documented. A particularly important mechanism

in such cases is short-time passage via direct paths: a
fraction of the molecular wavepacket reacts immediately
before the onset of IVR [51]. Here we discuss experi-
mental and computational examples of the deviations
that occur in larger organic molecules reacting on bound
potential wells. The reason for this choice is simply that
those molecules are chemically the vast majority of
interesting subjects for reaction control. Although the
discrepancies from statistical expectations are subtler, so
one could plead a special case for each example, they are
pervasive.

Many experiments document irregularities in the
isotope dependence of reaction rates. For example, the
electronically excited dissociation of acetone studied by
Owrutsky and Baronavski [52] deviates from RRKM
predictions: no decrease in dissociation rate upon deu-
teration is observed. SSMM calculations for ground-
state acetone show that it has a very small local density
of states even several thousand reciprocal centimeters
above the zero point level [23]. An even more dramatic
example is the cis–trans isomerization of stilbene, either
doubly deuterated at the two vinyl positions or tenfold
deuterated on the phenyl rings [53].The d2 compound
with the lower total density of states reacts more slowly
than the d10 compound. These measurements indicate
that the rate is not controlled by the total density of
states, but rather by the local number of coupled states,
Nloc, because of incomplete IVR. A simple IVR-iso-
merization model, which could explain such behavior,
and which also explains the anomalous pressure depen-
dence of the isomerization rate, has been proposed on
the basis of SSMM force field calculations [54]. Purely
statistical discussions of stilbene isomerization, although
capable of explaining many general trends, are forced
to selectively dismiss or ignore isotopic and pressure-
dependent data [55].

Subtler isotope effects also exist for heavier atoms.
Hathorn and Marcus [56] studied in detail nonstatisti-
cal bimolecular isotopomer production of ozone from
oxygen molecules and atoms. The non-RRKM effect is
small (15%), but indicates again that energy flow in the
state space is partitioned or locally anisotropic. As
is often the case, the deviation from statistical theory
is not dramatic, but indicates that incomplete energy
flow lurks just below the surface of thermally
averaged observations. Studies of IVR rates themselves,
of course, support the notion of a local density of
states as the important parameter, as discussed in
Sect. 4.

A very recent example of nonstatistical isomerization
in a large molecule involves the population of con-
formers of N-acetyl-tryptophan methyl amide by Dian
et al. [57]. Excitation of different NH fundamentals leads
to very different distributions of nearly isoenergetic
conformers. This result is puzzling in the context of total
density of states models, but it might be explainable, if
the conformer local densities of states are sufficiently
different. Like the cyclohexylaniline and methanol IVR
discussed in Sect. 4, the local density of states can fluc-
tuate significantly even in large molecules because it
depends only weakly on size, and depends instead on the
local bonding patterns.
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As a final example, the threshold dependence of
nonstatistical behavior is of particular interest from the
point of view of IVR control. Osterheld and Brauman
[58] investigated nonstatistical product formation in the
isomerization reaction of acetone enol cation to acetone
ion with subsequent loss of methyl groups. They found
that the product formation becomes increasingly non-
statistical, as the threshold for enol–acetone isomeriza-
tion is exceeded. Multiple time scales of IVR in the state
space model offer a general explanation for such be-
havior. Near the reaction threshold, reaction times
usually lie in the (sub)nanosecond range, giving even
power-law IVR enough time to reach the statistical limit.
A few thousand reciprocal centimeters above the
threshold, the reaction rates increase from the reciprocal
nanosecond to the reciprocal picosecond range [59],
while IVR remains nearly unchanged. The reacting
molecule now samples the power-law tail of incomplete
IVR, allowing the initial state to manifest itself in the
transition-state dynamics. In effect, the reaction dy-
namics time scale is tuning through the multiple IVR
time scales as a function of energy above threshold.2

All these examples indicate that energy flow does a
passable job at randomizing vibrational wavepackets
near the thermal threshold. However, on moving up in
energy into the realm of above-threshold photochemis-
try, slower IVR time scales could manifest themselves as
the reaction dynamics speed up. Clearly, much theoret-
ical work remains to be done, considering that most of
the experimental examples discussed here have not been
subject to a detailed quantitative explanation.

6 Quantum-classical and quantum control of IVR

The quest to control chemical reactions with lasers [60]
is as old as the quest to understand IVR, and is inti-
mately connected with it [8]. In highly excited organic
molecules, vibrational and vibronic couplings are the
strongest coherence-loss mechanisms. Expensive mode-
specifically deposited laser energy tends to flow through-
out the molecule, and one might as well have used a
heating mantle to achieve the same result.

At least this is how things appear on the surface. A
closer look, as taken in Sects. 2, 3, 4, and 5, shows that
this picture may be correct after tens of picoseconds, but
not necessarily before that. The initial IVR decay
(Fig. 2) is sufficient to randomize the reacting wave-
packet superficially, but then the decay plateaus into a
power law. The meaning of ‘‘superficial’’ is illustrated in
Fig. 5. where Neff is plotted as a function of time during
the evolution of the vibrational wavepacket. The curve
starts out at 1, then increases to astronomical values in
large molecules. However, anisotropic quantum diffusion
in state space is a much slower than exponential process,
and increasingly lengthy time spans are required to reach

the last expanses of state space. Now we have an issue of
controllability: how many states Neff can one control?
Modern laser pulse-shaping equipment is approaching
1,000 channels of complete frequency and phase control;
therefore any decay of the wavepacket survival proba-
bility up to 0.001 is ‘‘superficial’’, and can be reversed as
a matter of principle. As indicated in Fig. 5, this can buy
1–3 orders of magnitude in time, depending on the exact
values of kIVR and d [32]. The difference between expo-
nential and power-law decays is not merely cosmetic, but
qualitative: further progress in control capability buys
very little time along an exponential decay, but poten-
tially a lot along a power-law decay.

The concept of ‘‘irreversible’’ IVR of large molecules
must be made more precise now. As long as Neff is
smaller than the number of energy/phase control chan-
nels in available pulse shapers, the IVR decay is re-
versible in principle. Only when that number is exceeded
does the IVR decay become irreversible. Modest ad-
vances in control capability can push the irreversible
time scale back significantly when the decay is not
exponentially fast.

Because the initial stages of IVR at chemical energies
generally occur on a time scale greater than 50 fs, con-
trol over an additional 2 orders of magnitude in time is
sufficient to reach the reaction time scale. No control is
required beyond that, so coherence needs to be main-
tained only over an energy window DE � �h=srx. This
immediately suggests the following control scheme: use
coherent laser control to ‘‘freeze’’ the IVR for as long as
possible, and tailor product formation by selecting dif-
ferent initial states which are coupled to different parts
of the reactive continuum [8]. When IVR is ‘‘frozen’’,
reaction via direct paths (Sect. 5) is introduced in larger
molecules, by reducing the effectiveness of the competing
IVR channel. Such a mechanism would allow coherent
control of reactivity, but could also be important in
strong-field control: a weaker prepulse affecting energy

Fig. 5. Power-law dynamics greatly extends the temporal range
over which a given number of control parameters can control the
dynamics, when compared to exponential dynamics [32]

2 Vibronic couplings complicate the picture; however, most mole-
cules are not as exotic as the visible/near-UV absorbers and dyes
favored by laser spectroscopists, and major vibronic effects on the
ground-state surface are usually limited to isolated functional
groups.
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flow could bias the molecule toward certain channels
before field strengths comparable to Coulomb interac-
tions rip the molecule apart.

Is IVR control possible in practice? This can be ad-
dressed by quantum calculations, which can be grouped
into two classes:

1. In the familiar quantum-classical models, the relevant
Hamiltonian is ĤH ¼ ĤHmol � l̂lEðtÞ, and the laser field
is treated as a classical variable.

2. Recently, a full quantum model has been developed,
which yields surprisingly simple and manageable
exact control functional.

We discuss these approaches in turn.
A classical pulse-shaped control field that increases

the100-fs initial decay rate of the 8mCS stretching state of
thiophosgene to about 7 ps is shown in Fig. 6. The
computations were performed with a 6D SSMM Ham-
iltonian using the SUR propagator [32]. The electric field
was represented by a wavelet transform to allow simul-
taneous optimization on all frequency scales, and sim-

ulated annealing was used for the feedback optimization.
A modest 64 control channels and 80-fs input pulse were
used in the calculation, both within reach of experi-
ments, which currently could be scaled to 1,000 channels
per 10-fs input pulse. Rotational dephasing in this
molecule (and in all molecules large enough to be in-
teresting to control) occurs only on a time scale greater
than 10 ps. Thus freezing of IVR is a practical possibility
[8].

In full quantum control, the laser is treated as a
quantum field, and the exact control Hamiltonian has
the form

H ¼ Hmol þ
X

i

�hxi ayi ai þ
1

2

� �

�
X

n;i

cnil̂ln ayi þ ai

� �
þ H ð2Þint :

ð5Þ

For simplicity, the field polarization and k vectors
have been lumped into one index i per mode, the non-
relativistic approximation is made, the dipole approxi-
mation is made, and H(2), a further correction to the
interaction Hamiltonian in the strong-field limit, is not
given explicitly. None of these simplifications affect the
generality of this discussion. The full quantum Hamil-
tonian has two important advantages [40]. First, H is
time-independent, greatly simplifying the quantum dy-
namics. Second, H does not depend on the control pa-
rameters, which are now encoded in the molecule-field
density matrix. In principle, the control problem can
therefore be solved by noniterative linear variational
techniques.

Consider, for example, the target optimization func-
tional

T qðcÞ½ � ¼
Z1

�1

dt Tr qTðcÞ exp �iHt=�hð Þf

� q0ðcÞ exp iHt=�hð Þg: ð6Þ
The initial system-field density operator, q0, is prop-

agated in time, overlapped with the target, qT, and this
overlap is maximized. The optimization parameters, c,
do not occur in the exponential and H is time-indepen-
dent, so the whole expression can be integrated analyt-
ically to yield in the simplest case (see supplementary
material) [40]

T ½c� �
X

N

oEN ½c�
ok

oEN ½c�
ok0

; ð7Þ

where EN are eigenvalues of the operator ÔO ¼ ĤH þ kq̂q0þ
k0q̂qT (no knowledge of the eigenstates of ÔO is required).
Equation (7) is completely symmetrical, and can also be
used to study the output field after interaction. This
possibility is of particular interest because phase/ampli-
tude wavefront detection of optical pulses is becoming
feasible, opening up the possibility of new types of linear
and nonlinear spectroscopies, where the full output field
distribution is analyzed (most current experiments just
analyze an output intensity). It has been shown that the
same techniques used to filter state space basis sets

Fig. 6. A Control field freezes the initial IVR decay of the seventh
CS overtone of thiophosgene by 2 orders of magnitude longer than
the ‘‘natural’’ IVR decay excited by an 80-fs Gaussian pulse.
Control phase and amplitude from Ref. [32]. The largest black
circles indicate the phases associated with the largest amplitudes.
B Full quantum control calculation for two reactive states coupled
by three IVR states that induce dephasing [40]. A 2D slice through
the amplitude-phase control surface is shown
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for IVR can also be used to filter the molecule-field basis
to a manageable size, and computational examples of
Eq. (7) are given in Ref. [40]. Figure 6 shows an example
where the population of two isoenergetic product states
is tuned by coherently exciting an IVR ‘‘toy’’ manifold
of three states that provide dephasing.

Two additional aspects of Eqs. (5), (6), and (7) will be
discussed here. As written in Eq. (6), the density matri-
ces subject to optimization are for the field and molecule.
This is useful if one wants to incorporate explicit con-
straints in the field, or in the strong-field limit, when
molecular states are no longer independently defined. In
weak-field control, one often wishes to optimize just a
particular set of molecular states, for example, to freeze
IVR. This can be achieved easily by choosing a target
density matrix of the type

qT ¼

0 0 0

0

1=N 0 0

0 . .
.

0
0 0 1=N

0
B@

1
CA 0

0 0 0

0
BBBB@

1
CCCCA
: ð8Þ

This matrix is organized into blocks corresponding to
one molecular state each (but many field states). Only
one molecular state block is nonzero, projecting the total
density matrix onto the desired system state irrespective
of the resulting field states.

Equation (5) suggests an even more powerful future
approach to the full quantum control problem, which
could provide an exact solution for the functional [7].
The quantum field Hamiltonian consists of a set of
uncoupled harmonic oscillators, coupled linearly to
the molecule. The influence of such a boson bath on a
molecule can be evaluated exactly via path integrals [61].
Current path integral techniques are pushing towards
larger Hmol, and calculations with multilevel molecules
relevant to IVR control may soon be within computa-
tional reach.

The kinds of IVR control schemes restricting energy
flow described here may already be operative in coherent
control experiments of larger molecules such as iron
carbonyls [62] or organic ions [63]. Currently, these
systems are treated as ‘‘black boxes’’ subject to optimi-
zation [60]. Systematic variation of molecules to tailor
their local density of states could reveal how much a
reduction of IVR is responsible for the observed control.

7 Outlook

Subtle deviations in reaction dynamics experiments
indicate that chemical reactivity, particularly photo-
chemical, is not within the statistical territory by many
orders of magnitude. Locally anisotropic diffusion of
vibrational wavepackets in state space on multiple time
scales provides a natural description for these deviations.
The power-law tail of IVR decays allows vibrational
energy flow to be frozen over interestingly long time
scales, possibly extending the regime of nonstatistical
reactivity. Future calculation should try to account for
these subtle deviations from fully statistical behavior.

Future experiments should investigate systematically
whether chemical reactions in large molecules can indeed
be controlled by optically freezing molecular energy
flow.
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